28,553 research outputs found

    Universal features in sequential and nonsequential two-photon double ionization of helium

    Full text link
    We analyze two-photon double ionization of helium in both the nonsequential and sequential regime. We show that the energy spacing between the two emitted electrons provides the key parameter that controls both the energy and the angular distribution and reveals the universal features present in both the nonsequential and sequential regime. This universality, i.e., independence of photon energy, is a manifestation of the continuity across the threshold for sequential double ionization. For all photon energies, the energy distribution can be described by a universal shape function that contains only the spectral and temporal information entering second-order time-dependent perturbation theory. Angular correlations and distributions are found to be more sensitive to the photon energy. In particular, shake-up interferences have a large effect on the angular distribution. Energy spectra, angular distributions parameterized by the anisotropy parameters, and total cross sections presented in this paper are obtained by fully correlated time-dependent ab initio calculations.Comment: 12 pages, 8 figure

    Solvent dependence of kinetics and equilibria of thallium(I) cryptates in relation to the free energies of solvation of thallium(I).

    Get PDF
    Stability constants and dissociation rate constants of thallium (I) cryptates have been measured in several solvents at 25 °C. The Tl+ cryptates are more stable and less sensitive to ligand cavity size than the corresponding complexes of the alkali-metal cations. The stability constants vary strongly with solvent, and the solvent dependence of the complex stabilities appears to reflect mainly changes in the solvation of Tl+. It is shown that free energies of transfer of the solvated Tl+ among non–aqueous solvents calculated on the assumption that the difference in the free energies of transfer of the Tl+ cryptates and the corresponding cryptands is zero are in good agreement with literature data. Changes in the stability constants with solvent and ligand are reflected in changes in both dissociation and formation rate constants, but more so in the former. Thus the solvation of the transition state, (Tl+⋯Cry)[graphic omitted], is rather closer to that of the reactants, and includes additional solvent interactions compared with the stable cryptate complex, TlCry+

    Using the de Haas-van Alphen effect to map out the closed three-dimensional Fermi surface of natural graphite

    Full text link
    The Fermi surface of graphite has been mapped out using de Haas van Alphen (dHvA) measurements at low temperature with in-situ rotation. For tilt angles θ>60\theta>60^{\circ} between the magnetic field and the c-axis, the majority electron and hole dHvA periods no longer follow the cos(θ)\cos(\theta) behavior demonstrating that graphite has a 3 dimensional closed Fermi surface. The Fermi surface of graphite is accurately described by highly elongated ellipsoids. A comparison with the calculated Fermi surface suggests that the SWM trigonal warping parameter γ3\gamma_3 is significantly larger than previously thought

    Attosecond two-photon interferometry for doubly excited states of helium

    Full text link
    We show that the correlation dynamics in coherently excited doubly excited resonances of helium can be followed in real time by two-photon interferometry. This approach promises to map the evolution of the two-electron wave packet onto experimentally easily accessible non-coincident single electron spectra. We analyze the interferometric signal in terms of a semi-analytical model which is validated by a numerical solution of the time-dependent two-electron Schr\"odinger equation in its full dimensionality.Comment: 5 pages, 4 figure

    Probing Electron Correlation via Attosecond XUV Pulses in the Two-Photon Double Ionization of Helium

    Full text link
    Recent experimental developments of high-intensity, short-pulse XUV light sources are enhancing our ability to study electron-electron correlations. We perform time-dependent calculations to investigate the so-called "sequential" regime (photon energy above 54.4 eV) in the two-photon double ionization of helium. We show that attosecond pulses allow to induce and probe angular and energy correlations of the emitted electrons. The final momentum distribution reveals regions dominated by the Wannier ridge break-up scenario and by post-collision interaction.Comment: 4 pages, 5 figure

    Model-independent view on the low-mass proton-antiproton enhancement

    Full text link
    We present a simple interpretation of the recently observed near-threshold proton-antiproton enhancement. It is described by a set of low-energy parameters deduced from the analysis of NantiN experiments at LEAR. We predict a related effect in photoproduction reaction under study by CLAS collaboration.Comment: 10 pages, 2 figure

    Semiclassical theory of laser-assisted dissociative recombination

    Get PDF
    We study the process of laser-assisted dissociative recombination of an electron with a molecular cation using a semiclassical approach. In the region outside a reaction sphere the electron motion in the combined laser and Coulomb fields is treated classically. Within the sphere the laser-field effects are neglected, and the recombination probability is obtained from quantum-mechanical cross sections calculated for the laser-free process. Specific calculations are performed for dissociative recombination of H2+ in the field of the intensity 2.09 GW/cm2 and the wavelength 22.8 μm. In the energy region above 1 meV the cross section is significantly enhanced compared with the field-free case due to the Coulomb focusing effect. The influence of the indirect process due to electron capture into Rydberg states is also investigated. Although the Rydberg resonances are washed out due to the field effects, they influence significantly the magnitude of the dissociative recombination cross section

    Betalains and phenolic compounds of leaves and stems of Alternanthera brasiliana and Alternanthera tenella

    Get PDF
    Betacyanins and phenolic compounds from acetonitrile:acidified water extracts of Alternanthera brasiliana and Alternanthera tenella were characterized and quantified using a high-performance liquid chromatography system coupled with diode array and electrospray mass spectrometry detection. Four betacyanins (amaranthine, isoamaranthine, betanin and isobetanin) were tentatively identified and quantified. Twenty eight phenolic compounds of four different families (hydroxybenzoic and hydroxycinnamic acids, flavones and flavonols) were separated and characterized on the basis of their accurate MS and MS/MS information out of which ten compounds were confirmed by authentic standards. These plant species could be considered as an especially rich source of natural bioactive compounds and potential food colorants. A. brasiliana showed the highest betacyanin and polyphenols content (89 μg/g and 35,243 μg/g, respectively). Among polyphenols, flavonols were the more abundant (kaempferol-glucoside, kaempferol-rutinoside and kaempferol-rhamnosyl-rhamnosyl-glycoside). Meanwhile, A. tenella showed a different polyphenols profile with flavones as major compounds (glucopyranosil-vitexin and vitexin). As a novelty, pentosyl-vitexin and pentosyl-isovitexin were detected for the first time in Alternanthera plants. Both A. brasiliana and A. tenella leaves showed high total polyphenol content and in vitro antioxidant activity (FRAP). These results provide an analytical base concerning the phenolic and betalains composition and the antioxidant properties of two members of the promising Alternanthera gender, for subsequent applications, such as functional food ingredients.Fil: Deladino, Lorena. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Alvarez, I.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; EspañaFil: De Ancos, B.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; EspañaFil: Sánchez Moreno, C.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; EspañaFil: Molina García, A. D.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; EspañaFil: Schneider Teixeira, Aline. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; Españ

    Angular momentum exchange between coherent light and matter fields

    Full text link
    Full, three dimensional, time-dependent simulations are presented demonstrating the quantized transfer of angular momentum to a Bose-Einstein condensate from a laser carrying orbital angular momentum in a Laguerre-Gaussian mode. The process is described in terms of coherent Bragg scattering of atoms from a chiral optical lattice. The transfer efficiency and the angular momentum content of the output coupled vortex state are analyzed and compared with a recent experiment.Comment: 4 pages, 4 figure

    The Effect of Variability on the Estimation of Quasar Black Hole Masses

    Full text link
    We investigate the time-dependent variations of ultraviolet (UV) black hole mass estimates of quasars in the Sloan Digital Sky Survey (SDSS). From SDSS spectra of 615 high-redshift (1.69 < z < 4.75) quasars with spectra from two epochs, we estimate black hole masses, using a single-epoch technique which employs an additional, automated night-sky-line removal, and relies on UV continuum luminosity and CIV (1549A) emission line dispersion. Mass estimates show variations between epochs at about the 30% level for the sample as a whole. We determine that, for our full sample, measurement error in the line dispersion likely plays a larger role than the inherent variability, in terms of contributing to variations in mass estimates between epochs. However, we use the variations in quasars with r-band spectral signal-to-noise ratio greater than 15 to estimate that the contribution to these variations from inherent variability is roughly 20%. We conclude that these differences in black hole mass estimates between epochs indicate variability is not a large contributer to the current factor of two scatter between mass estimates derived from low- and high-ionization emission lines.Comment: 76 pages, 15 figures, 2 (long) tables; Accepted for publication in ApJ (November 10, 2007
    corecore